If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8t^2+32t-13=0
a = -8; b = 32; c = -13;
Δ = b2-4ac
Δ = 322-4·(-8)·(-13)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{38}}{2*-8}=\frac{-32-4\sqrt{38}}{-16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{38}}{2*-8}=\frac{-32+4\sqrt{38}}{-16} $
| 10(z−9)=-40 | | 10(z−9)=-40−40 | | 3x^2=20x+2 | | z+|3.6|=10.4 | | x²+6x+9=49/4 | | -8n(5n-3)=0 | | 3^x=21 | | 1+2x-4x-3=18 | | -2(x+2)=-4x+16 | | 233=119-y | | x^2-12x+36/x+7=0 | | 3x-7=5x+37 | | 27x+18=360x+72 | | 2(4x+6)=5x+3(x+4 | | (–4,6);m=3/4 | | (3x+3)=129 | | 14x+44=12 | | y/2=-31 | | 12y-1+3y=-6 | | 2(2.3t−3.2)=9.7= | | (2x+25)=55 | | 20=-4u | | 4^(x+1)-2^(x+3)-320=0 | | 2n=2-3n | | -7+23y=11 | | 3(2x-7)^2=15 | | x/3-7=2x/3+2 | | 18x+6-4x=34 | | 18x+6-4=34 | | -11b+7=40 | | −4(−3x−2)+4x+5=−3 | | x+9=2x-111 |